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A systematic method is developed to obtain increasingly accurate semiclassical initial value representation
(IVR) approximations to the exact quantum propagator. The main result is a series of correction terms of
increasing order in a “correction operator”, which describes the difference between the exact evolution equation
and the equation obeyed by the semiclassical propagator. Each term in the series involves only phase space
integrals of classical trajectories and is therefore, in principle, amenable to numerical computation. The
properties of the “correction operator” are studied for three different representations of the semiclassical
propagator. For initial times, we find that the propagator suggested recently by Baranger et al. is superior to
a thawed Gaussian propagator or the Herman-Kluk propagator.

I. Introduction

A major advance in semiclassical theory has been the
formulation of initial value representations (IVR) of the
semiclassical propagator. Recent reviews of the history of the
semiclassical IVR have been given by Grossmann1 and Baranger
et al.2 Instead of a double-ended boundary value problem as in
the VanVleck-Gutzwiller propagator,3,4 the IVR allows one to
express a semiclassical approximation to the propagator that
depends only on the initial conditions in phase space and the
classical trajectory initiated at the point. This simple structure
is very convenient for Monte Carlo computations, especially if
one computes thermal averages, such as thermal correlation
functions. The Boltzmann factor usually prevents the need for
integration for times that are too long, and the semiclassical
IVR computation can be converged numerically. In addition,
as pointed out by Miller,5,6 in contrast to the Van Vleck-
Gutzwiller semiclassical propagator, the prefactor of the IVR
representation does not diverge. Heller suggested in 19757 to
use thawed Gaussians as an approximate semiclassical propaga-
tor. In 1984, Herman and Kluk8 derived an IVR of the
semiclassical propagator. The practical usefulness of the Her-
man-Kluk propagator was first pointed out by Kay,9-11 who
showed that it could lead to rather accurate approximation of
exact quantum results. These initial studies were then followed
by the work of Tannor, Grossmann, and others12-19 who applied
the propagator to a number of problems, including the collinear
hydrogen exchange reaction, which eluded a “good” semiclas-
sical solution for decades.

At present, the semiclassical IVR is the most powerful and
perhaps also promising tool for computation of quantum effects
in “large” systems. But the IVR does have drawbacks. Perhaps
the most serious one is that, to date, it is an uncontrollable
approximation. Correction terms to the approximation have not
been derived, so one does not have an objective handle that
could be used to assess the quality of the approximation. The

propagator is not unique. One may write down infinitely many
IVR representations of an IVR semiclassical propagator, all of
which have the nice properties that their stationary phase limit
reduces to the correct Van Vleck-Gutzwiller result and they
are unitary in the stationary phase sense. This multiplicity has
led recently to a new derivation of an IVR propagator by
Baranger et al.2 that differs from the Herman-Kluk and thawed
Gaussian propagators. A lively discussion on the merits of the
differing propagators has recently taken place.2,20,21

A different critique of the Herman-Kluk (HK) propagator
was presented recently in ref 22. In a previous study of the initial
time dependence of operators in phase space,23 we found that
for short times the classical propagator is exact. For example,
for a coordinate-dependent operator, the first three initial time
derivatives are given exactly by classical mechanics. In ref 22,
it was shown that the HK propagator was already not exact for
short times, introducing spurious terms that are on the order of
p. However, for longer times, the classical approximation of
course fails, while the HK propagator remained reasonably
accurate, following correctly the quantum coherences. It is
therefore of interest to compare the short-time properties of the
Herman-Kluk, Heller, and Baranger et al. propagators.

The main purpose of the present paper is to show that one
can readily derive systematic correction terms to the semiclas-
sical IVR propagator, which are functions only of the underlying
classical trajectories and their properties. This result allows, for
the first time, a systematic examination of the quality of the
semiclassical IVR representation. It should also help to eliminate
the controversy as to which is the “best” method. The “best”
semiclassical IVR will be the one for which the corrections are
“smallest” so that the series of correction terms converges most
rapidly. We will show that, at least for short propagation times,
the leading order “correction” operator is, in a sense, smallest
for the Baranger et al. (BEA) propagator.

The systematic correction of semiclassical IVR approxima-
tions to the propagator is presented in section II. Then, in section
III, we review briefly the BEA and thawed Gaussian (TG)† Part of the special issue “Donald J. Kouri Festschrift”.
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propagators and derive an explicit expression for their respective
“correction operator”. The comparison between the initial time
properties of the BEA, TG, and HK propagators is presented
in section IV, and we end with a discussion of the implication
of our results on future uses of the semiclassical initial value
representation.

II. Systematic Improvement of Semiclassical IVR
Propagators

We assume a system described by the Hamiltonian operator
Ĥ. The equation of motion for the propagator

is, of course,

We then assume that there exists an approximation to the exact
propagator, denoted asK̂0, which obeys the equation of motion:

where the known “correction operator”,Ĉ, is hopefully a small
correction only. This form is motivated by a previous result for
the HK propagator, which has this structure.22 We also assume
that at timet ) 0 the operatorK̂0 ) Î. We will now show that
one can construct a hopefully convergent series of operators,
the error of which will be of increasing power in the correction
operator.

We note that the exact propagator is unitary

but that this is not necessarily the case for the approximate
propagator,K̂0. Expanding the exact propagator in a series

where we assume that thenth term (δK̂n) is on the order of the
nth power of the correction operator, we readily find

If the approximate propagator is unitary for all times, then
K̂0

-1 ) K̂0
† and the solution of eq 2.6 may be represented in

terms of the time-ordered exponential operator

The semiclassical IVR propagators to be discussed in this paper
are, however, not unitary, so one must work a bit more. The
unitarity of the exact propagator and eq 2.5 imply that

We therefore find from eq 2.6 that the first two correction terms
to the propagator take the form

and derivation of higher order correction terms is straightforward
but increasingly lengthy. An explicit expression for the correc-
tion operator of the HK propagator has been derived in ref 22.
In the next section, we derive the correction operator for the
BEA and TG propagators.

III. The Correction Operator

A. The Baranger et al. Propagator.In this first paper, we
will restrict ourselves to one-dimensional systems (with unit
mass), governed by the Hamiltonian operator:

where p̂ and q̂ are the momentum and coordinate operators,
respectively, obeying the commutation relation

The coherent state representation of the BEA semiclassical IVR
propagator may be deduced from eq 4.55 of ref 2 to be

The coordinate representation of the Gaussian wave packets with
the time-dependent real width parameter,Γ(t), is

Here, q(t) and p(t) are the classically evolved values of the
coordinate and the momentum, respectively, given that at time
t ) 0 q(0) ) q and p(0) ) p. That is, q(t) and p(t) obey
Hamilton’s equations of motion

where the dot denotes time differentiation and the coherent state
representation of the Hamiltonian is

with the transformed potential

The classical action is

and the added exponential term, which results from the
semiclassical estimate of the coherent state propagator,2 is

K̂ ) e-(i /p)Ht (2.1)

ip
∂

∂t
K̂ ) ĤK̂ (2.2)

ip
∂

∂t
K̂0(t) ) ĤK̂0(t) + Ĉ(t) (2.3)

K̂K̂† ) Î (2.4)

K̂ ) K̂0(Î + δK̂1 + δK̂2 + ...) (2.5)

ip
∂

∂t
(δK̂1 + δK̂2 + ... + δK̂n + ...) )

-K̂0
-1Ĉ(Î + δK̂1 + δK̂2 + ... + δK̂n + ...) (2.6)

K̂(t) ) K̂0(t) e+
i /p∫0

t dt′K̂0
†(t′)Ĉ(t′) (2.7)

K̂0
-1 )

(I + δK̂1 + ... + δK̂n + ...)(I + δK̂1
† + ... + δK̂n

† + ...)K̂0
†

(2.8)

δK̂1(t) ) i
p
∫0

t
dt′ K̂0

†(t′)Ĉ(t′) (2.9)

δK̂2(t) ) i
p
∫0

t
dt′ ((δK̂1(t′) + δK̂1

†(t′))K̂0
†(t′)Ĉ(t′) +

K̂0
†(t′)Ĉ(t′)δK̂1(t′)) (2.10)

Ĥ ) p̂2

2
+ V(q̂) (3.1)

[q̂, p̂] ) ip (3.2)

K̂B ≡ eB
-iĤt/p ) ∫-∞

∞ dp dq
2πp

D(p,q,t) e(i /p)(ι(p,q,t)+SHh (p,q,t))

|g(p,q,t)〉〈g(p,q,0)| (3.3)

〈x|g(p,q,t)〉 ) (Γ(t)
π )1/4

e-[Γ(t)/2][x-q(t)]2+(i / p)p(t)[x-q(t)]

(3.4)

q̆(t) ) ∂H̃
∂p

) p(t) (3.5)

p̆(t) ) - ∂H̃
∂q

) -Ṽ′(q) (3.6)

H̃ ) 〈g(p,q,0)|H|g(p,q,0)〉 ) 1
2
p2 +

p2Γ(0)
4

+ Ṽ(q) (3.7)

Ṽ(q) ≡ (Γ(0)
π )1/2∫-∞

∞
dx e-Γ(0)(x-q)2

V(x) (3.8)

SH̃(p,q,t) ) ∫0

t
dt′ {p(t′)q̆(t′) - H̃[p(t′),q(t′)]} (3.9)
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The preexponential factor is

where the time-dependent width parameter,Γ(t), is determined
by

and

The mkl’s are the elements of the monodromy matrix:

The width parameterΓ(0) is a free parameter, the magnitude
of which is typically chosen according to some physical
consideration of the problem being studied.

At time t ) 0, the prefactorD(p,q,0) ) 1 and the actions
SHh(p,q,0) ) ι(p,q,t) ) 0. Therefore, the operator reduces to the
identity operator, as it should.

B. The Thawed Gaussian Propagator.As shown by
Baranger et al.,2 Heller’s suggestion to use a thawed Gaussian
propagator leads to a form that is very similar to the BEA
propagator:

The main difference between this operator and the BEA operator
is that here the classical trajectories obey Hamilton’s equations
of motion for the Weyl symbol of the Hamiltonian, which in
our case is just the classical Hamiltonian

Thus the action in eq 3.18 is the classical action

The prefactorD(p,q,t) has the same form as in eq 3.11; however,
the time dependence is obtained through the classical trajectories
governed byHc instead ofH̃. The added exponential termι-
(p,q,t) does not appear here.

C. The Correction Operator. We shall first derive the
correction operator for the BEA propagator. We note a few
useful identities. The coherent state matrix element of the
Hamiltonian operator is

from which we deduce that

Considering explicitly the time derivative of the semiclassical
propagator, eq 3.3, one finds

noting that

that

and that

Using the identity

inserting eqs 3.22-3.24 into eq 3.21, using eq 3.20, and
rearranging gives the modified equation

where the “correction operator”ĈB(t) is found to be

ι(p,q,t) ) 1
2∫0

t
dt′ ( 1

2Γ(0)
∂

2H̃

∂q2
+

p2Γ(0)
2

∂
2H̃

∂p2 ) (3.10)

D(p,q,t) ) 1

xmqq + imqp
(Γ(0)

Γ(t))1/4

(3.11)

Γ(t) ≡ Γ(0)
1 - γ(t)

1 + γ(t)
(3.12)

γ(t) ≡ mqq + imqp + impq - mpp

mqq + imqp - impq + mpp
(3.13)

mqq ≡ ∂q(t)
∂q

(3.14)

mqp ≡ pΓ(0)
∂q(t)
∂p

(3.15)

mpq ≡ 1
pΓ(0)

∂p(t)
∂q

(3.16)

mpp ≡ ∂p(t)
∂p

(3.17)

K̂TG ) ∫-∞

∞ dp dq
2πp

D(p,q,t) e(i /p)SH(p,q,t)|g(p,q,t)〉〈g(p,q,0)|
(3.18)

Hc(p,q) ) 1
2

p2 + V(q) (3.19)

SH(p,q,t) ) ∫0

t
dt ′ {p(t ′)q̆(t ′) - Hc[p(t ′),q(t ′)]} (3.20)

〈x|Ĥ|g(p,q,t)〉 ) (- p2

2
d2

dx2
+ V(x))〈x|g(p,q,t)〉

) (V(x) + p2

2 (Γ(t) - [ i
p

p(t) -

Γ(t)(x - q(t))2]2))〈x|g(p,q,t)〉 (3.21)

Ĥ|g(p,q,t)〉 )

(V(q̂) + p2

2 (Γ(t) - (ip(t)
p

- Γ(t)[q̂ - q(t)])2))|g(p,q,t)〉

(3.22)

i p
∂

∂t
K̂B ) ∫

-∞

∞ dp dq
2πp

(i p∂D(p,q,t)
∂t

D(p,q,t)
- ∂

∂t
(ι(p,q,t) +

SH̃(p,q,t)) + i p

∂

∂t
|g(p,q,t)〉

|g(p,q,t)〉 )D(p,q,t) e(i /p)(ι(p,q,t)+SH̃(p,q,t))

|g(p,q,t)〉〈g(p,q,0)| (3.23)

∂

∂t
(ι(p,q,t) + SH̃(p,q,t)) )

p(t)2

2
- Ṽ(q(t)) +

Ṽ′′(q(t))

4Γ(0)
(3.24)

i p

∂D(p,q,t)
∂t

D(p,q,t)
)

p2Γ(t)
4

+
Ṽ′′(q(t))

4Γ(t)
(3.25)

i p

∂

∂t
|g(p,q,t)〉

|g(p,q,t)〉
) 1

4(p2Γ(t) -
Ṽ′′(q(t))

Γ(t) )(1 - 2Γ(t)(q̂ -

q(t))2) + (q̂ - q(t))(Ṽ′(q(t)) + i pp(t)Γ(t)) + p(t)2 (3.26)

(p2Γ(t)2 - ip
∂Γ
∂t ) ) Ṽ′′[q(t)] (3.27)

i p
d
dt

K̂B ) ĤK̂B + ĈB(t) (3.28)
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We note that for a harmonic potential the correction operator is
identically zero, as it should be; the semiclassical IVR propaga-
tor is exact for harmonic systems.

Derivation of the correction operator for the thawed Gaussian
propagator follows similar lines, and one finds

This form is especially transparent; using the Taylor expansion

one notes that the leading order term in the correction operator
involves the cubic derivative of the potential. Clearly, for
harmonic systems, the correction operator is identically zero.

Finally, we note also the correction operator found in ref 22
for the HK propagator:

where

so that

For the HK propagator, the classical trajectories evolve on the
“bare” potential,V(q), and not on the coherent state averaged
potential,Ṽ(q).

IV. Initial Time Properties

A. Initial Time Correction Operator. To get a better feeling
for the correction operator in the various representations, it is
useful to study its initial time properties. Using the identity

one readily finds for the BEA correction operator that att ) 0

The initial time correction operator is not zero only if the
potential has terms on the order ofq6 or higher. The leading
order term will then be on the order ofΓ(0)-3. Because,
typically, one choosesΓ(0) to be inversely proportional top,
this means that the correction operator is on the order ofp3.
We also note that the initial time correction operator is
Hermitian.

The initial time correction operator for the thawed Gaussian
propagator is

demonstrating that this correction operator becomes nonzero
when the nonlinearity of the potential is quartic or higher. This
then implies a leading order term that goes asΓ(0)-2 or on the
order ofp2. This is a first indication that the BEA correction
operator issmallerthan the Heller thawed Gaussian correction
operator.

For the sake of completeness, we also write down the HK
initial time correction operator (eq 2.15 of ref 22):

This operator also becomes nonzero when the anharmonicity
is quartic or higher. Thus, it will be on the order ofp2 and so
inferior to the BEA but similar to the TG propagator.

B. Initial Time Derivative of an Operator. We will consider
the time evolution of a Hermitian operator,O(p̂,q̂). The exact
time evolution of the operator under the HamiltonianĤ is

The semiclassical IVR time evolution of the operator is given
by replacing the quantum evolution operator with its semiclas-
sical IVR counterpart, denoted asK̂j, where the subscriptj
denotes any one of the three propagators that we have been
considering. The approximate time derivative of the operator
is then found by using eq 2.3:

At the initial time, t ) 0, the semiclassical IVR propagator,
as noted above, is the identity operator. In other words, the initial
time derivative of an Hermitian operatorO(p̂,q̂) is

ĈB(t) ) ∫-∞

∞ dp dq
2πp (Ṽ[q(t)] + Ṽ′[q(t)][ q̂ - q(t)] +

Ṽ′′[q(t)]
2

[q̂ - q(t)]2 - V(q̂) - 1
4Γ(0)

Ṽ′′[q(t)])
D(p,q,t) e(i /p)(ι(p,q,t)+SH̃(p,q,t))|g(p,q,t)〉〈g(p,q,0)| (3.29)

ĈTG(t) ) ∫-∞

∞ dp dq
2πp (V[q(t)] + V′[q(t)][ q̂ - q(t)] +

V′′[q(t)]
2

[q̂ - q(t)]2 - V(q̂))D(p,q,t) e(i /p)SH(p,q,t)|g(p,q,t)〉〈g(p,q,0)|

(3.30)

V(q̂) ) V(q(t) + [q̂ - q(t)]) )

V(q(t)) + V′[q(t)][ q̂ - q(t)] +1
2
V′′[q(t)][ q̂ - q(t)]2 + ...

(3.31)

ĈHK(t) ) ∫-∞

∞ dp dq
2πp (p2Γ(0)2

2
[q̂ - q(t)]2 -

p2Γ(0)
2

+

i p
Ṙ(p,q,t)

R(p,q,t)
+ V[q(t)] + V′[q(t)][ q̂ - q(t)] - V(q̂))
R(p,q,t) e(i /p)S(p,q,t)|g(p,q,t)〉〈g(p,q,0)| (3.32)

R(p,q,t) ) 1

x2
(mpp - imqp + mqq + impq)

1/2 (3.33)

Ṙ(p,q,t) ) 1
4R(p,q,t)(- i

V′′[q(t)]

pΓ(0)
(mqq - imqp) -

i pΓ(0)(mpp + imqp)) (3.34)

V(q̂) ) ∫-∞

∞ dp dq
2πp

(e-1/(2Γ(0))(d2/dq2 )Ṽ(q))|g(p,q,0)〉〈g(p,q,0)|
(4.1)

ĈB(0) ) ∫-∞

∞ dp dq
2πp (Ṽ(q) -

Ṽ′′(q)

2Γ(0)
+

Ṽ (4)(q)

8Γ(0)2
-

e-1/(2Γ(0))d2/dq2
Ṽ(q))|g(p,q,0)〉〈g(p,q,0)| (4.2)

ĈHK(0) ) 3
2
Ṽ(q̂) - V(q̂) -

xΓ(0)
π ∫-∞

∞
dq e-Γ(0)(q̂-q)2

Γ(0)V(q)(q̂ - q)2 (4.4)

O(p̂,q̂,t) ) e(it /p)Ĥ O(p̂,q̂,0) e-(it /p)Ĥ ) K̂†(t)O(p̂,q̂,0)K̂(t)
(4.5)

ipȮ(p̂,q̂,t)j ) K̂ j
†(t)[O(p̂,q̂,0),Ĥ]K̂j(t) + K̂ j

†(t)O(p̂,q̂,0)Ĉj(t) -

Ĉj
†(t)O(p̂,q̂,0)K̂j(t) (4.6)

Improvement of Semiclassical IVR Propagator J. Phys. Chem. A, Vol. 107, No. 37, 20037115



If the operatorO depends only on the coordinates, thenO will
commute withĈ(0) and the initial time derivative obtained from
the semiclassical IVR propagator is exact. If however the
operatorO depends also on the momentum operator, then the
commutator [O(p̂,q̂),Ĉ(0)] * 0 and the initial time derivative
obtained from the semiclassical IVR propagator is no longer
exact.

Consider the simple case ofO(p̂,q̂) ) p̂. The Wigner
representation of an operator is defined as26

The exact initial time derivative of the momentum operator is
ipp̂ ) [p̂,Ĥ]. In the Wigner representation, one then finds that
the initial time derivative is

and this is of course also the exact classical result.
When one uses the semiclassical IVR propagator, then one

must also consider the commutator [p̂,Ĉ(0)]. Some straightfor-
ward algebra, using the definition of eq 4.8, shows that

whereCj(q) is the Wigner representation of the operatorĈj(0).
Clearly, the order of accuracy of the initial time derivative for
the three propagators is that the accuracy of the BEA operator
is greater than that of the HK and TG propagators.

Finally, we note that if one uses the leading order correction
to the semiclassical IVR, one readily finds that the initial time
derivative of the operator is now exact for all representations.
Specifically, using eqs 2.3 and 2.8, one finds

which is of course the exact result. If however one estimates
the second initial time derivative, one will find again an error
but now of orderĈ(0)2. If one employs also the second-order
correction to the semiclassical IVR, one will find that also the
second initial time derivative is exact.

IV. Discussion

The central result of this paper is the development of a
perturbation series for the semiclassical IVR propagator in terms
of the known “correction operator”. As one increases the order
of the terms, one will increase the accuracy of the approximate
propagator. Each added term ensures the exactness of a higher
order initial time derivative of the propagator. Because numerical
computations show that often the error in the semiclassical
propagator remains relatively small for rather long times, one
may expect that the perturbation series will converge rather
rapidly. It is remarkable that the convergence of the series
implies obtaining exact quantum mechanical results using only
classical trajectories and the linearized motion about them.

The analytical results derived in this paper are also useful in
determining the relative merits of different semiclassical IVR
propagators. We have seen that the BEA propagator leads to a
correction operator which, at least for short times, depends on
the sixth order of the nonlinearity in the potential. The thawed
Gaussian and the HK propagators involve the fourth order. In

this sense, the BEA propagator is the most accurate. We do
note that all semiclassical IVR propagators considered in this
paper are not unitary. Moreover, the operator definition of the
propagators, as used in this paper, also does not conserve the
norm, that is,〈g(p,q)|K̂jK̂ j

†|g(p,q)〉 does not necessarily equal
unity for all times.27 In other words, normalization is not a
sufficient condition for preferring one propagator to the other.
All operators considered are unitary in the stationary phase
sense.

From a practical point of view, the BEA form is not very
convenient for numerical computations because it involves
trajectories on the coherent state averaged potential. This implies
that for large scale systems it is no longer possible to carry out
computations on the fly. Because the thawed Gaussian and the
HK propagators involve trajectories on the bare potentials but
give a similar initial time correction operator, we would
conclude that either one of them would do. In practice, one
should use either of them and then study which leads to a smaller
first-order correction term.

We have not presented here any numerical computations. This
is left for future work. We do note that each added term in the
“correction operator” series involves an additional phase space
integration of oscillatory integrands, so we do not expect that
it will be easy to always converge the series. However,
computing the first-order term should not be too difficult, and
it should indicate the quality of the approximation obtained
through the leading term, which involves the semiclassical IVR
propagator only.

One of the major drawbacks of all semiclassical IVR
approximations is that thus far they have not been sufficient
for accounting for deep tunneling phenomena. It remains an
open question for future study whether the systematic correction
method presented in this paper will turn out to be a practical
method that can extend the semiclassical IVR propagators also
to deep tunneling problems.
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i pȮ(p̂,q̂,t)|t)0 ) [O(p̂,q̂),Ĥ + Ĉj(0)] (4.7)
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