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A systematic method is developed to obtain increasingly accurate semiclassical initial value representation
(IVR) approximations to the exact quantum propagator. The main result is a series of correction terms of
increasing order in a “correction operator”, which describes the difference between the exact evolution equation
and the equation obeyed by the semiclassical propagator. Each term in the series involves only phase space
integrals of classical trajectories and is therefore, in principle, amenable to numerical computation. The
properties of the “correction operator” are studied for three different representations of the semiclassical
propagator. For initial times, we find that the propagator suggested recently by Baranger et al. is superior to

a thawed Gaussian propagator or the Heririgluk propagator.

I. Introduction propagator is not unique. One may write down infinitely many
IVR representations of an IVR semiclassical propagator, all of
which have the nice properties that their stationary phase limit
reduces to the correct Van Vleekutzwiller result and they
are unitary in the stationary phase sense. This multiplicity has
led recently to a new derivation of an IVR propagator by
Baranger et al.that differs from the HermanKluk and thawed

A major advance in semiclassical theory has been the
formulation of initial value representations (IVR) of the
semiclassical propagator. Recent reviews of the history of the
semiclassical IVR have been given by Grossmama Baranger
et al? Instead of a double-ended boundary value problem as in
the VanVleck-Gutzwiller propagatof;* the IVR allows one to ) . - . .
express a semiclassical approximation to the propagator thatG_aus_smn propagators. A lively discussion on tzhle merits of the
depends only on the initial conditions in phase space and thedn‘fenpg pmpag"’?t‘“s has recently taken pl&ée:
classical trajectory initiated at the point. This simple structure A different critique of the HermanKluk (HK) propagator
is very convenient for Monte Carlo computations, especially if WaS presented recently in ref 22._ In a previous study of the initial
one computes thermal averages, such as thermal correlatiorfiMe dependence of operators in phase spées found that
functions. The Boltzmann factor usually prevents the need for '0F Short times the classical propagator is exact. For example,
integration for times that are too long, and the semiclassical O @ coordinate-dependent operator, the first three initial time
IVR computation can be converged numerically. In addition, _derlvatlves are given exactly by classical mechanics. In ref 22,
as pointed out by MilleF in contrast to the Van Vieck it was §howr} that thg HK propagator was already not exact for
Gutzwiller semiclassical propagator, the prefactor of the VR Shorttimes, introducing spurious terms that are on the order of
representation does not diverge. Heller suggested in"1@75 h. Howevgr, for _Ionger times, the classical approximation of
use thawed Gaussians as an approximate semiclassical propag&Urse fails, while the HK propagator remained reasonably
tor. In 1984, Herman and Kldkderived an IVR of the accurate, following correctly the quantum coherences. It is
semiclassical propagator. The practical usefulness of the Her_therefore of interest to compare the short-time properties of the
man-Kluk propagator was first pointed out by Ky!! who Herman—KIuk, Heller, and Baranger et al. propagators.
showed that it could lead to rather accurate approximation of "€ main purpose of the present paper is to show that one
exact quantum results. These initial studies were then followed ¢@n readily derive systematic correction terms to the semiclas-
by the work of Tannor, Grossmann, and oth&r® who applied sical !VR prqpaga.tor, which are functhns only of the underlying
the propagator to a number of problems, including the collinear class_lcal ’_[rajectorles and t_he|r propertl_es. This result gllows, for
hydrogen exchange reaction, which eluded a “good” semiclas- the flrst tl_me, a systematic e_xamlnanon of the quality _of_the
sical solution for decades. semiclassical IVR representation. It should also help to eliminate

At present, the semiclassical IVR is the most powerful and the controversy as to which is the “best” method. The “best”
perhaps also promising tool for computation of quantum effects semiclassical IVR will be_the one for WhICh the corrections are
in “large” systems. But the IVR does have drawbacks. perhaps“sm_allest" o) t_hat the series of correction terms converges most
the most serious one is that, to date, it is an uncontrollable apidly. We will show that, at least for short propagation times,
approximation. Correction terms to the approximation have not the leading order “correction” operator is, in a sense, smallest
been derived, so one does not have an objective handle thafor the Baranger et al. (BEA) propagator.
could be used to assess the quality of the approximation. The ~The systematic correction of semiclassical IVR approxima-
tions to the propagator is presented in section Il. Then, in section
T Part of the special issue “Donald J. Kouri Festschrift”. [ll, we review briefly the BEA and thawed Gaussian (TG)
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propagators and derive an explicit expression for their respective
“correction operator”. The comparison between the initial time
properties of the BEA, TG, and HK propagators is presented )
in section IV, and we end with a discussion of the implication sz ity =L " gt (K. (1) + SR T NK [OYE) +
of our results on future uses of the semiclassical initial value A hfo ((OKy(®) 1(EDKAOCA)

OR(t) = 'ﬁ [ Ki)E() 2.9)

representation. K It)E)oK,(t)) (2.10)
Il. Systematic Improvement of Semiclassical IVR and derivation of higher order correction terms is straightforward
Propagators but increasingly lengthy. An explicit expression for the correc-

We assume a system described by the Hamiltonian operatortion operator of the HK propagator has been derived in ref 22.
H. The equation of motion for the propagator In the next section, we derive the correction operator for the

BEA and TG propagators.

2 - (i/R)Ht
K=e 2.1) [ll. The Correction Operator
is, of course, A. The Baranger et al. Propagator.In this first paper, we
P will restrict ourselves to one-dimensional systems (with unit
ihaK = HK (2.2) mass), governed by the Hamiltonian operator:
a2
We then assume that there exists an approximation to the exact A=E 4 V(§) (3.1)
propagator, denoted &, which obeys the equation of motion: 2
9 . ) wherep and g are the momentum and coordinate operators,
ihaKo(t) = HK(t) + C(t) (2.3) respectively, obeying the commutation relation
[G. p] = ih (3.2)

where the known “correction operato€, is hopefully a small
correction only. This form is motivated by a previous result for The coherent state representation of the BEA semiclassical IVR
the HK propagator, which has this structdféVe also assume  propagator may be deduced from eq 4.55 of ref 2 to be

that at timet = O the operatoK, = |. We will now show that

one can construct a hopefully convergent series of operators,kB = eB—iﬂt/h = j‘“’ dp dg D(p,a.t) /M Up.ab+Sap.a)

the error of which will be of increasing power in the correction —o 27h

operator. 19(p,a,t) Ig(p,a.0)l (3.3)

We note that the exact propagator is unitar . . . .
propag y The coordinate representation of the Gaussian wave packets with

KRT=1 (2.4) the time-dependent real width parametéft), is
1/4
but that this is not necessarily the case for the approximate X g(p,qt) = (@) g [TO721x—aO1*+(/RpO[x—a(v]
propagatorKo. Expanding the exact propagator in a series 4 (3.4)
K =Kol + 0K, + 0K, + ...) (2.5) Here, q(t) and p(t) are the classically evolved values of the

. coordinate and the momentum, respectively, given that at time
where we assume that theh term OKy) is on the order of the  t = 0 g(0) = q and p(0) = p. That is, q(t) and p(t) obey

nth power of the correction operator, we readily find Hamilton’s equations of motion
29 " > _ _0H_
|h§[((§Kl+(SK2+ oK, + )= q(t) . p(t) (3.5)

—Ko e + 0K, + 0K, + ...+ 0K, + ..) (2.6) o

| - | p®) =~ 3, = V(@) (36)
If the approximate propagator is unitary for all times, then q

Ko™t = K; and the solution of eq 2.6 may be represented in where the dot denotes time differentiation and the coherent state
terms of the time-ordered exponential operator representation of the Hamiltonian is

- A7T(0) |
A= 0Pa0HIgpa0= 3+ 2+ Uq (3.7)

K(t) _ Ro(t) e+i/hf6dt’R0T(t’)C(t’) 2.7)
The semiclassical IVR propagators to be discussed in this paper .
are, however, not unitary, so one must work a bit more. The With the transformed potential
unitarity of the exact propagator and eq 2.5 imply that T(0)\12
Y — «© ~I(0)(x—q)
. Y(q) :( - ) J7 dxe V(Y (3.8)

(1 + 0K, + oo 0K, + )0 + 0K+ o+ 0K+ )RS The classical action s

2.8) Sipad = [ ot {pt)a) — AlpE).a®)}  (3.9)

We therefore find from eq 2.6 that the first two correction terms and the added exponential term, which results from the
to the propagator take the form semiclassical estimate of the coherent state propagador,
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1 ot 1 %A hZF(O)azFi)
pat)=5/ dt' |-—=—=-—+ — 3.10
(Pa) =3/ (2r(0) w2 e CO
The preexponential factor is
1 F(O) 1/4
D(pat) = _ ) (3.11)
VMg + imgp\ 1)

where the time-dependent width paramel&t), is determined
by

y(®
't = F(O)r(t) (3.12)
and
Myq imqp + impq ~ My
t) = - - 3.13
70 Myq + 1Mgp = 1Mpq + My, ( )
The my's are the elements of the monodromy matrix:
aq(t
My = % (3.14)
My, = AC(0) o2 3q(t) (3.15)
1 op()
™= Ar©) o9 (3.16)
0
M, = Z’—S) (3.17)

The width parameteF'(0) is a free parameter, the magnitude
of which is typically chosen according to some physical
consideration of the problem being studied.

At time t = 0, the prefactoD(p,q,0) = 1 and the actions
S1(p,9,0) = «(p,q,t) = 0. Therefore, the operator reduces to the
identity operator, as it should.

B. The Thawed Gaussian Propagator.As shown by
Baranger et ak Heller's suggestion to use a thawed Gaussian
propagator leads to a form that is very similar to the BEA
propagator:

Ko = [ dp qu(p q.t) €"MSPY|g(p,q,t) g (p,q,0)]
(3.18)

at' 9(pant
The main difference between this operator and the BEA operatorjp ™ — ( 2r(t) —
is that here the classical trajectories obey Hamilton’s equations

of motion for the Weyl symbol of the Hamiltonian, which in
our case is just the classical Hamiltonian

H(p.a) = 5p” + V(a) (3.19)
Thus the action in eq 3.18 is the classical action
Si(p.at) = j;t dt’ {p(t)a(t’) — HJp(t).aqt)]}  (3.20)

The prefactoD(p,q,t) has the same form as in eq 3.11; however,

the time dependence is obtained through the classical trajectories dt

governed byH. instead ofH. The added exponential term
(p,q,t) does not appear here.
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C. The Correction Operator. We shall first derive the
correction operator for the BEA propagator. We note a few
useful identities. The coherent state matrix element of the
Hamiltonian operator is

2 y2

AP0 (— St V(x))mg(p,q,t)m

~ (voo + o~ [Lot0 -

roc- a0y Bismann e
from which we deduce that
Rlg(p.at=

2
%0 ot - o) ) iatpan
(3.22)

(v +[ro - (P©

Considering explicitly the time derivative of the semiclassical
propagator, eq 3.3, one finds

oD(p,q.t)
ih%kB= “d;n%q ihs (Fitq,t) —%(L(p,q,t)-i-
S + ,hM D(p.q) &"/MUPa) (P
o lg(p.a,t)0] ’
19(p,a.t)[I9(p,a.0)| (3.23)
noting that
)2 V' (q(t
et + Sipat) =25 - Uaw) + o) (320
that
R
ot _RT(@) | V'(qlt
M omay — 4 T arq (3.25)
and that
V@), o
opanD 4 0 )(1 2Ho

q®)?) + (@ — a) (V' (@A) + iipOTO) + pt)* (3.26)

Using the identity

(hzr(t)2 —ih ar)

v la()] (3.27)

inserting eqs 3.223.24 into eq 3.21, using eq 3.20, and
rearranging gives the modified equation

in Jk, = AR, + E4(0) (3.28)

where the “correction operato€sg(t) is found to be
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Cot = S~ L8 Vo) + V'LaNla - ) + V@) = 7, LI YO (q)) (0,0, 0)T0(p.1.0)
4.1)
V"[Q(t)] 1, . .
——16— a1 - V(@) 4F(O)V [a(®)] one readily finds for the BEA correction operator that at 0
D(p,t) e'/MUPaY+S®AN (0 4 ) Tg(p.c,0)| (3.29) A dp dq{ G I B
Cs(0) \V( a) 21(0) + 8r(0)

We note that for a harmonic potential the correction operator is

identically zero, as it should be; the semiclassical IVR propaga- /(TN Rl

tor is exact for harmonic systems. e VO ) |19(p.0.0) TG (p.g,0)| (4.2)
Derivation of the correction operator for the thawed Gaussian

propagator follows similar lines, and one finds o ) ) .
The initial time correction operator is not zero only if the

. B dp dq '[q(t)] potential has terms on the order gff or higher._ The leading
Crel®) = VIa®] + V'IaOIag —a®l + —5— order term will then be on the order df(0)-3. Because,
typically, one choose§(0) to be inversely proportional th,
R 5 . (1)Spa) this means that the correction operator is on the ordéi®of
[4 — a()]” — V(@ |D(p.a.t) € “7l9(p,a,t)Ig(p,a,0)| We also note that the initial time correction operator is
Hermitian.
(3.30) The initial time correction operator for the thawed Gaussian
propagator is
This form is especially transparent; using the Taylor expansion

d iV d¥V(q)
V(@) = V(@) + [a — qW)) = Cra(0) = [ day| " Derore-ar S > Gra-a (43)
' A " A 2 Jj=2 J
V(a(®) + V'[a®Ig — a®)] +%V [aMIG — a®]” +
(3.31) demonstrating that this correction operator becomes nonzero

when the nonlinearity of the potential is quartic or higher. This
then implies a leading order term that goed&3)~2 or on the
order ofA? This is a first indication that the BEA correction
operator issmallerthan the Heller thawed Gaussian correction
operator.

For the sake of completeness, we also write down the HK
initial time correction operator (eq 2.15 of ref 22):

one notes that the leading order term in the correction operator
involves the cubic derivative of the potential. Clearly, for
harmonic systems, the correction operator is identically zero.

Finally, we note also the correction operator found in ref 22
for the HK propagator:

a ~ dp dg[H’T(0)’ hT (0) . )
Cux(®) = zpnr? > 10— q]* - C.(0)= :—;V(Q) - V(@) —
Rp.aY T dqe O roM@@-— o (4.4
IhR(p ab +Va®] + V'[a®)]lg — a®)] — V(@)
i This operator also becomes nonzero when the anharmonicity
(iI/MSp.at)
R(p.a) e™"Ig(p.a,)M(p.q.0)l (3.32) is quartic or higher. Thus, it will be on the order fof and so
where inferior to the BEA but similar to the TG propagator.

B. Initial Time Derivative of an Operator. We will consider
1 ) the time evolution of a Hermitian operatd(p,§). The exact
R(p,a.t) = Tz(mpp — img, + My, +imyg) (3.33) time evolution of the operator under the Hamiltonidris

o6t = e 0(p,8,0) € VMM = KT(1)O(p,5,0K (1)

so that (4.5)
Rp.al) = 1 [ V"[Q( )], B The semiclassical IVR time evolution of the operator is given
P 4R(p,q,t)\ AT(0) ‘mqq D) by replacing the quantum evolution operator with its semiclas-

sical IVR counterpart, denoted 4§, where the subscript
AL (0) (M, +imy)) | (3.34) denotes any one of the three propagators that we have been
considering. The approximate time derivative of the operator

For the HK propagator, the classical trajectories evolve on the iS then found by using eq 2.3:

“bare” potential,V(q), and not on the coherent state averaged . ot o aa .t A
potential, (g). IRO(,a.t); = Kj(O[O(D.0,0)HIK;(®) + K ()O(p.8,0)C;(t) —

I : ClHOP.a.0K () (4.6
IV. Initial Time Properties i(DOPG.0K;(H (4.6)
A. Initial Time Correction Operator. To get a better feeling At the initial time,t = 0, the semiclassical IVR propagator,
for the correction operator in the various representations, it is as noted above, is the identity operator. In other words, the initial

useful to study its initial time properties. Using the identity time derivative of an Hermitian operat@(p,q) is
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iRO(p,8.) 1= = [O(P.8).H + C(0)] (4.7)
If the operatorO depends only on the coordinates, ti@mvill
commute withC(0) and the initial time derivative obtained from
the semiclassical IVR propagator is exact. If however the
operatorO depends also on the momentum operator, then the
commutator O(p,§),C(0)] = 0 and the initial time derivative
obtained from the semiclassical IVR propagator is no longer
exact.

Consider the simple case d(p,§) = p. The Wigner
representation of an operator is definedfas

£
a+5]@8)

_ 1 e ipen [ &l e

0P =57/, d& €[4~ 5/0(.)

The exact initial time derivative of the momentum operator is

ihp = [p,H]. In the Wigner representation, one then finds that
the initial time derivative is

Pli—o =~ V'(a)

and this is of course also the exact classical result.

(4.9)
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this sense, the BEA propagator is the most accurate. We do
note that all semiclassical IVR propagators considered in this
paper are not unitary. Moreover, the operator definition of the
propagators, as used in this paper, also does not conserve the
norm, that is,[g(p.q)|K;K /lg(p,q)Jdoes not necessarily equal
unity for all times?” In other words, normalization is not a
sufficient condition for preferring one propagator to the other.
All operators considered are unitary in the stationary phase
sense.

From a practical point of view, the BEA form is not very
convenient for numerical computations because it involves
trajectories on the coherent state averaged potential. This implies
that for large scale systems it is no longer possible to carry out
computations on the fly. Because the thawed Gaussian and the
HK propagators involve trajectories on the bare potentials but
give a similar initial time correction operator, we would
conclude that either one of them would do. In practice, one
should use either of them and then study which leads to a smaller
first-order correction term.

We have not presented here any numerical computations. This
is left for future work. We do note that each added term in the

When one uses the semiclassical IVR propagator, then one“correction operator” series involves an additional phase space

must also consider the commutat@r((0)]. Some straightfor-
ward algebra, using the definition of eq 4.8, shows that

2 4G(a)
dq

whereC;(q) is the Wigner representation of the opera&mo).
Clearly, the order of accuracy of the initial time derivative for

H[B.E(O)y = — ﬁh (4.10)

integration of oscillatory integrands, so we do not expect that
it will be easy to always converge the series. However,
computing the first-order term should not be too difficult, and
it should indicate the quality of the approximation obtained
through the leading term, which involves the semiclassical IVR
propagator only.

One of the major drawbacks of all semiclassical IVR
approximations is that thus far they have not been sufficient

the three propagators is that the accuracy of the BEA operatorfor accounting for deep tunneling phenomena. It remains an

is greater than that of the HK and TG propagators.

Finally, we note that if one uses the leading order correction
to the semiclassical IVR, one readily finds that the initial time
derivative of the operator is now exact for all representations.
Specifically, using eqgs 2.3 and 2.8, one finds

|h%(Kj(l + 0Ry))lo = (4.11)
which is of course the exact result. If however one estimates
the second initial time derivative, one will find again an error
but now of orderC(0)2. If one employs also the second-order
correction to the semiclassical IVR, one will find that also the
second initial time derivative is exact.

IV. Discussion

The central result of this paper is the development of a
perturbation series for the semiclassical IVR propagator in terms
of the known “correction operator”. As one increases the order
of the terms, one will increase the accuracy of the approximate

propagator. Each added term ensures the exactness of a higher

order initial time derivative of the propagator. Because numerical
computations show that often the error in the semiclassical
propagator remains relatively small for rather long times, one
may expect that the perturbation series will converge rather
rapidly. It is remarkable that the convergence of the series
implies obtaining exact quantum mechanical results using only
classical trajectories and the linearized motion about them.
The analytical results derived in this paper are also useful in
determining the relative merits of different semiclassical IVR

open question for future study whether the systematic correction
method presented in this paper will turn out to be a practical
method that can extend the semiclassical IVR propagators also
to deep tunneling problems.
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